AN INDIVIDUAL-BASED MODEL FOR ANALYZING THE EVOLUTION OF TRADITIONAL FORAGING STRATEGIES

By

Andrew Robert Kanarek

A Thesis

Presented to
The Faculty of Humboldt State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

In Environmental Systems: Mathematical Modeling

(May, 2006)
AN INDIVIDUAL-BASED MODEL FOR ANALYZING THE EVOLUTION OF
TRADITIONAL FORAGING STRATEGIES

by

Andrew Robert Kanarek

Approved by the Master's Thesis Committee:

Dr. Roland H. Lamberson, Major Professor

Dr. Jeffrey M. Black, Committee Member

Dr. Sharon Brown, Committee Member

Dr. Sharon Brown, Graduate Coordinator

Donna E. Schafer, Dean for Research and Graduate Studies
An individual-based model has been developed to simulate the evolution of traditional foraging strategies in a fluctuating environment. The parameters and procedures are based on observed behavior of Barnacle geese, *Branta leucopsis*, during spring staging off the coast of Helgeland, Norway. Within a spatially heterogeneous environment, goose movement is modeled according to state dependent site selection decisions which maximize food intake. The aim of each individual is to optimize fitness (survival and reproduction) by gaining enough food (energy reserves) during three weeks of foraging to meet a threshold of energy necessary for successful reproduction. The geese return to the same islands each year, and on a daily basis choose unoccupied sites according to their rank in the population structured dominance hierarchy, memories of previously visited sites (tradition), past reproductive success, inherited genetic influence towards site faithfulness and/or site quality, and knowledge of the available biomass density. It is assumed that with each subsequent return to a specific location, increased familiarity of the area will benefit an individual through greater food acquisition by more efficient foraging practices. In the event of variable environmental conditions, geese are faced with a critical decision to return to previously visited sites or abandon tradition to explore for something better. It is shown that habitat quality plays an integral role in
population dynamics. The evolution of foraging strategies which directly affects reproductive potential will inevitably determine the resilience of the population over time. Simulations of variable habitat availability were run and analyzed which serve to indicate the effect of certain strategies. It is shown that under environmental stasis the population stabilizes and traditional foraging is an optimal strategy. When faced with small perturbations to the foraging grounds, however, the population declines slightly but recovers quickly and generally maintains an affinity toward previously visited patches. Under significant environmental disturbance, site fidelity reduces the chance for reproductive success and survival, and does not usually remain a prevalent behavior in the population. Overall, tradition is most beneficial when reality and expectation coincide, otherwise a compromising strategy must be employed to mitigate the interim. This modeling approach has the potential to reveal significant insight into the emergence of stable responses to environmental disturbance.
ACKNOWLEDGEMENTS

I am privileged to have had Rollie Lamberson for my advisor throughout my graduate work at Humboldt State University. His contributions to mathematical ecology and individual-based modeling have significantly shaped this field of study. He has greatly impacted my academic interests and will always be an inspiration to me. Jeff Black, to whom the premise of this project can be attributed, has consistently instigated deep philosophical thought on animal behavior and has aided in every way he could in this thesis. The development of this model has benefited tremendously from the advice of James Steiner, many thanks. Sharon Brown has provided valuable feedback regarding this culminating research, and has always been available for support and guidance. I am grateful to my loving family for all their support; they are all responsible for all of my success. Thank you to everyone that has played an integral role in my life during my time in Arcata, it has been an extraordinary experience.
TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ... vi

LIST OF FIGURES ... vii

LIST OF TABLES ... viii

INTRODUCTION .. 1

THE MODEL .. 5

Environment ... 6
Geese .. 7
Validation ... 14
Parameterization ... 15
Output .. 20
Experiments .. 21

RESULTS .. 23

DISCUSSION .. 37

REFERENCES ... 40
LIST OF FIGURES

Figure 1: An example of the spatial element of the interface of the model. These islands are the foraging grounds during the three weeks of the spring staging. The vegetative density is depicted through color scale (darker = highest). .. 7

Figure 2: Daily intake rate at four instances of consecutive annual visitation, as a function of biomass density and daily residency. Graph (a) represents the first visit to a patch ($i = 1$), graph (b) represents 2 previous visits ($i = 3$), graph (c) is for 5 previous visits ($i = 6$), and (d) is an example of 9 previous visits ($i = 10$). 10

Figure 3: Frequency distribution of patches with available biomass (0 to 1). 3a is the profile of the main island, and 3b describes the alternate island. The coloration helps the GUI visually indicate the density of biomass at each patch. 16

Figure 4: Graphs of population versus time averaged for all the model replicates for (a) optimal conditions, (b) one year of full biomass depletion, (c) 5 years of full depletion, and (d) 10 years of full depletion. Blight (100%) was imposed at year 250 all runs. 24

Figure 5: Graphs of population versus time averaged for all the model replicates with 50% biomass depletion over (a) one year, (b) 5 years, and (c) 10 years. Blight was imposed at year 250 for all runs... 25

Figure 6: Without environmental degradation, this is the range of individuals at each age with their energy reserves, total offspring (lifetime reproductive success), and tradition (counts of consecutive returns). A trendline was applied with a weighted regression to provide an idea of the correlative relationships................................. 27

Figure 7: Plots of the mean number of offspring at each level of tradition (annual and lifetime), with (a,b) no disturbance, (c,d) 1, (e,f) 5, and (g,h) 10 years of full blight. 29

Figure 8: Genetic progression for individuals’ according to year of birth with the values for the influence of tradition (weighted value for choosing a site based on the number of previous visits) and influence of exploration (to seek out a higher quality patch). The plots are for specific simulations with (a) no blight, (b) 1 year, (c) 5 years, and (d) 10 years of full (100%) biomass depletion... 32

Figure 9: Genetic progression for simulations with a redistribution of biomass (a) at every 3 years (with a reproductive threshold, RT of 60), (b) at every 5 years (with an RT of 62), (c) at every 7 years (with an RT of 64), (d) at every 10 years (with an RT of 66), and (e) at every 15 years (with an RT of 68). .. 36
LIST OF TABLES

Table 1: Equations and Parameters with there values, describing the amount of food that an individual can intake at a patch, based on biomass availability, daily residency, and consecutive returns (tradition). That value is then converted to energy. ... 9

Table 2: The scoring equation and parameter values based on the influences of tradition and biomass, as well as previous reproductive success (for initial island selection). ... 13

Table 3: Data output by file type. Daily, Annual, and Lifetime statistics are categorized by goose identification number and written in the end of each period. 21

Table 4: Pearson correlation coefficients for the effect of tradition on reproductive success (RS) with full (100%) biomass depletion ... 28

Table 5: The descriptive statistics for the values of genetic influence (tradition and exploration) for an entire simulation of 500 years as well as the last 250 years. The mean, variance, and ratio for tradition and exploration, in addition to the total number of individuals, are given for experiments with optimal conditions (control), full (100%) habitat removal over 1, 5, and 10 years, and habitat redistribution at every 3, 5, 7, 10, and 15 years. ... 33
INTRODUCTION

Studying the dynamics of an evolving system involves analyzing the governing behavior that influences individual performance (Krebs & Davies 1978, 1984, 1991, 1997). Various strategies emerge over time, but those which become evolutionarily stable perpetuate optimal fitness and contribute the most to the gene pool (Wilson 1975, Dawkins 1976). Mechanisms and principles that drive animal behavior directly relate to the quality of the environment. Recognizing specific conditions that generate immediate and emergent response is useful in understanding the overall efficacy of certain strategies. An individual-based model has been developed in order to examine these notions through the process of site selection of traditional foragers in a variable environment.

The ebb and flow of an ecosystem is fundamentally based on the complex interactions of behaviors employed by coexistent entities. Identifying individual traits provides keen insight into system level patterns (Grimm & Railsback 2005). Modeling state dependent decisions of organisms in the context of a spatially heterogeneous environment will lead to a deeper understanding of the adaptive process. In this regard, methods and procedures were constructed which allow individuals to assess and weigh their available choices based on their location and current status, both physiologically and communally. These attributes include energy reserves, spatial memories, genetic disposition, dominance rank, reproductive success, and awareness of habitat quality. Simulating each individual in parallel with their unique characteristics, in addition to
simplified rules for interaction (between each other and their environment), can adequately model the dynamics of an ecosystem (Grimm & Railsback 2005). This type of modeling approach has become a useful tool for understanding ecological phenomena.

The bottom-up modeling methodology can provide theoretical insights into the dynamics of the systems investigated from a pragmatic and paradigmatic perspective (Grimm 1999). Volker Grimm (1999) discusses a pragmatic motivation for the use of individual-based modeling, “to study problems that cannot be addressed with state variable models” by including important features of individuals that contribute to the emergent behavior of a population. DeAngelis et al. (1980) developed one of the first individual-based simulations of a fish cohort because it would not have been possible to model the problem in question by any other approach. The paradigmatic drive originates from the possibility of deficiencies in classical theoretical ecology due to the inability to understand how individual properties determine the properties of the system (Grimm 1999). Kaiser (1979) and Lomnicki (1978) were pioneers in this school of thought by challenging classical population models that could not provide an adequate representation of the processes in question. As we begin to desire more insight into ecological systems and seek higher level understanding of complex adaptive behavior, the use of individual-based modeling can prove quite helpful in these pursuits. With regard to studying foraging strategies, the individual-based modeling approach presented in this paper enabled conclusions that may not have otherwise been realized.

For this model system, knowledge of one’s surroundings is considered to be evidently advantageous, being helpful in making decisions to optimize the response to a
given situation. Many animals retain a spatial awareness, and develop routines and
customs from previous experience in seeking similar outcomes. This traditional behavior
is thought to be an adaptive strategy due to the payoffs (Avital & Jablonka 2000), which
increase each time a routine is repeated. In the context of foraging, familiarity with an
area develops with duration of residency, and presumably leads to more efficient food
acquisition (Black et al. 2006). This strategy is often motivated by the expectation of
certain results, but may be due to limited awareness of potentially better alternatives. The
combination of these factors plays an integral role in site selection behavior especially
with changing habitat quality. When resources deteriorate or disappear, the animal is
faced with a decision about staying to make the most of a bad situation or setting off to
explore for something different (Goss-Custard & Sutherland 1997, Sutherland et al.
2002). With the pressure of temporal constraints (starvation, breeding, etc.), the choice
will be based on whether the payoff at a new site may be greater than the benefit gained
at the degraded, but still familiar site. Determining circumstantial response in the
practice or abandonment of traditional or routine foraging enables theoretical
understanding of the interplay of environmental effects on behavior.

This model is intended for generalized application for the analysis of site faithful
foraging and the evolution of stable movement strategies, but has been developed based
on the Svalbard population of barnacle geese, Branta leucopsis (Owen & Black 1989,
Black & Owen 1995). For three weeks in May, en route from their wintering area to the
breeding grounds in Spitsbergen, the barnacle geese stop along the coast of Norway, on
the archipelagos of the Helgeland district (Black et al. 1991). This segment of the
migration routine is devoted to accumulating fat reserves and nutrients critical to reproduction (Prop & Black 1998, Prop et al. 2003). During this spring staging period, empirical observation reveals significant site fidelity in habitat selection (Black et al. 2006); however changes in the quality of their traditional staging grounds may lead to destabilizing effects on the goose population (Black et al. 1991, 2006). Increasing spring temperatures, changing agricultural practices and other variable influences may cause habitat degradation, causing possible abandonment of traditional sites in favor of exploration and new colonization (Prop et al. 1998). By modeling individual foraging behavior through specific state dependent procedures, we can begin to examine the complexity of tradition versus exploration.

The model is presented by describing the main structural components that are essential for a realistic simulation of the system in question. The methods and procedures were ascertained from empirical evidence and inference, and are discussed and validated through the resulting observations. Within the general objective, the development of the artificial ecosystem has been corroborated with population-level trends and pattern-oriented analysis. By producing reasonable global dynamics, we may ensue confidence in the effectiveness of the underlying properties and procedures of the model (Grimm & Railsback 2005). Several realizations are explored to assess population response to both consistent and fluctuating environmental conditions, in addition to the overall individual-level behavioral consequences. Success in capturing the essence of this ecological system merits further experimentation and investigation of specific hypotheses.
THE MODEL

The model is based on discrete dynamic governing equations and state dependent procedures which optimize behavior at each time step as a result of an individual’s current fitness. The NetLogo programming environment provides a useful agent-based modeling platform in which the simulated system can be implemented (Wilensky 1999). The program maintains the identity of each agent (individual entity) and processes them uniquely through each applicable routine. At each time step, individuals make fitness optimizing decisions according to their status within the population and the environment. The spatial structure has two scales, the archipelagos comprising the entire spring staging area, and a grid of patches within these islands. Decisions are made upon arrival at the staging area for a particular island (where they remain for the duration of the season), and then for a specific patch on that island which is projected to offer the most energy accumulation (expected payoff). Being that the spring stopover is the primary focus of this model, the temporal arena consists of a three week period tracked with a one day time step, and the year is incremented at the beginning of the season. Beyond the focus of this model, the other aspects of the annual cycle (breeding and survival) are based on empirically derived probabilities and are updated prior to the geese returning to the staging area (Pettifor et al. 2000). Thus, the model captures detailed behavior of foraging during this particular segment of the annual cycle by maintaining realistic life histories.
Environment

The model is setup by generating archipelagos to represent the staging environment. Separate islands vary in the amount and distribution of viable foraging habitat. The spatial structure is mapped by a grid-work of cells/patches, which can be occupied by one agent (goose) at a time. Each patch is ascribed a percentage of vegetative cover (amount of available biomass, shown in Figure 1) that is randomly distributed and smoothed with neighboring cells. The resulting value for each patch is recorded as the normal biomass density, which is used as the default amount of available biomass at the beginning of each year. Seasonal environmental fluctuation and daily growth and depletion are tracked through a current biomass variable associated with each patch. Whereas the daily growth is constant for all patches, depletion (with a specified decay rate) can be imposed on individual sites or uniformly over an entire island. Site selection, movement decisions, and individual intake rate is predominantly based on the measure of biomass quality ($\beta_{i,j}$) for each specific patch.

The default layout for the simulated environment has been fixed at a level that supports stable populations and maintains consistency between model runs. The habitat can then be altered for various experiments to observe behavioral responses. It is assumed that the main driving force behind habitat choice is the accumulation of sufficient energy to survive and reproduce (Black et al. 2006). Seasonal climate changes and site deterioration instigate strategic alterations in movement between sites. Overall, these response behaviors to fluctuating quality of habitat are measured globally by
genetic variation through natural selection promoting those individuals whose decisions inevitably allow for optimal fitness.

Figure 1: An example of the spatial element of the interface of the model. These islands are the foraging grounds during the three weeks of the spring staging. The vegetative density is depicted through color scale (darker = highest).

Geese

The primary individual attributes of the geese in this model are age, energy reserves and intake, genetic disposition, spatial memory of previously visited locations, and reproductive success. Barnacle geese form monogamous bonds at an early age (Choudhury & Black 1993, Black et al. 1996), so each ‘individual’ in the model represents a pair, and therefore collective behavior determines their overall fitness and success, as it would in the natural system. Otherwise, the model may be considered a female only model, since mating does not occur.

When a model run is setup, each individual in the initial population is identical except for their ages. These ages are non-integer values so they can be easily used to rank the geese from oldest to youngest as part of a dominance hierarchy. Each year a goose returns to the staging area, their age is incremented by one with a 20 year limit. In addition to dying of old age; mortality can occur as a result of starvation or other natural
causes on or off the staging area. Each goose maintains its energy reserves as a function of daily food intake less daily energy expenditure. When the geese arrive at the staging grounds, all goose’s energy reserves are reset to the same level to reflect the energy expended in flight. Since the accumulation of sufficient energy reserves is necessary for successful reproduction (Prop et al. 2003), the ability to breed is determined by a preset threshold value of energy reserves. A goose will leave the staging grounds either when the threshold is reached, or at the end of the stopover period. Therefore, it is critical that the geese forage efficiently, as their primary goal is reproduction.

The daily intake rate of an individual goose depends on specific factors pertaining to the patch and the goose. Foremost, with regard to the patch, intake is a function proportional to the amount of biomass on a patch. More food available translates into a greater probability of finding food, which decreases as biomass is depleted. A goose remaining on a patch becomes more familiar with locating food there and therefore becomes more efficient in foraging on that patch. Thus, each day a goose stays on a particular patch their potential intake rate increases (\(\alpha\), derived from empirical data, Black et al. 2006). In terms of individual variation, a goose’s previous experience can also affect its’ foraging efficiency. Herein lies the essence of the ‘traditional’ strategy. Each consecutive year a goose returns to the same patch, they increase their familiarity with the site and hence their ability to locate food, boosting their potential intake rate. Thus, experiential memory of a traditional patch affords a goose a slight benefit over spending time exploring an unknown location. The benefit follows an asymptotic function (\(\phi_i\)), increasing with consecutive visits (\(i\)) on a yearly scale (discussed further in
the Parameterization section). The relationship between tradition, daily residence, and available biomass on the intake rate is shown graphically in Figure 2, and the daily intake rate \(I_{t,j} \), current biomass \(\beta_{t,j} \), and energy reserves \(E_t \) are calculated for each day \(t \) on a specific patch \(j \) with the equations and parameters in Table 1.

Table 1: Equations and Parameters with their values, describing the amount of food that an individual can intake at a patch, based on biomass availability, daily residency, and consecutive returns (tradition). That value is then converted to energy.

<table>
<thead>
<tr>
<th>Equations & Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Intake Rate:</td>
<td>(I_{t,j} = \frac{(\alpha_t \beta_{t,j} + \phi_t)}{\gamma})</td>
</tr>
<tr>
<td>Biomass :</td>
<td>(\beta_{t,j} = \beta_{t-1,j} - I_{t-1,j} + \eta)</td>
</tr>
<tr>
<td>Proportion of biomass consumed :</td>
<td>(\alpha_t = \mu t + \theta)</td>
</tr>
<tr>
<td>Biomass consumed due to tradition :</td>
<td>(\phi_t = \tau \left(\frac{i - 1}{(i - 1) + \nu} \right))</td>
</tr>
<tr>
<td>Energy Reserves:</td>
<td>(E_t = E_{t-1} + (I_{t,j})\delta - \kappa)</td>
</tr>
<tr>
<td>Day:</td>
<td>(t = 1, 2, ..., 21)</td>
</tr>
<tr>
<td>Number of consecutive years at a patch :</td>
<td>(i)</td>
</tr>
<tr>
<td>Patch/Cell :</td>
<td>(j)</td>
</tr>
<tr>
<td>Total number of days spent foraging :</td>
<td>(\gamma = 20)</td>
</tr>
<tr>
<td>Energy conversion factor :</td>
<td>(\delta = 40)</td>
</tr>
<tr>
<td>Consecutive yearly returns for a substantial effect of tradition on daily intake:</td>
<td>(\nu = 3)</td>
</tr>
<tr>
<td>Fraction increase of biomass consumed per day :</td>
<td>(\mu = 0.2)</td>
</tr>
<tr>
<td>Fraction of biomass consumed on arrival :</td>
<td>(\theta = 0.65)</td>
</tr>
<tr>
<td>Maximum amount of biomass for consumption from tradition :</td>
<td>(\tau = 2)</td>
</tr>
<tr>
<td>Energy expenditure per day :</td>
<td>(\kappa = 1)</td>
</tr>
<tr>
<td>Daily growth of biomass :</td>
<td>(\eta = 0.001)</td>
</tr>
</tbody>
</table>
Figure 2: Daily intake rate at four instances of consecutive annual visitation, as a function
of biomass density and daily residency. Graph (a) represents the first visit to a
patch ($i = 1$), graph (b) represents 2 previous visits ($i = 3$), graph (c) is for 5
previous visits ($i = 6$), and (d) is and example of 9 previous visits ($i = 10$).

When the geese initially arrive at the staging area, they proceed in choosing an
island and then a patch on that island that will maximize their daily expected intake rate.
The geese are ranked in a dominance hierarchy which determines the order in which they
choose a patch, producing a despotic distribution (Black et al. 2006). The older geese
have seniority over the younger ones because of age, experience, and reproductive
success. These terms are factored into the dominance ranking. At first arrival and over
the course of the season, the geese adhere to this order each time they survey available
patches and choose to move. An occupied patch prevents other geese from landing there,
thus the hierarchical foraging ensures the senior geese maintain a competitive advantage
for the best patches. A goose will remain on the patch until their intake rate drops below
the amount that was initially available to them on that particular patch. “Birds migrate at
a point when it is no longer profitable to remain in a particular area” (Prop et al. 2003).
Once a goose decides to leave a patch, it considers a number of factors in choosing where
to go.

In the model, the geese choose a patch by assigning a score to all the unoccupied
possibilities on their respective island. For these simulations, the geese have ‘ideal’
knowledge of their environment and the specific attributes of each patch (Fretwell &
Lucas 1970, Sutherland 1983). When evaluating a patch, a goose takes into account the
available biomass, whether they have previously visited there, and their ‘innate’
preference for these qualities. These preferences are manifested through genetic values
that add weights ($\sigma_{trad}, \sigma_{explore}$) to the factors affecting site selection which emphasize
exploration for a high quality habitat and/or returning to a patch that they are familiar
with (have visited in the previous season). These traits, when passed down to offspring,
are subjected to possible random mutation. If the inherited preference of an individual
enables higher reproductive success, the numerical value or weight of the genes will
eventually be selected for and evolve through the population. These values are used in
conjunction with their knowledge of the available food \((\beta_{i,j})\) as well as the goose’s memory of the patch \((\hat{\phi}_i)\), more consecutive visits increases efficiency and is therefore beneficial). The memory of a location provides an individual with an expectation for their chances at finding available vegetation, which may not be the case in reality. For this reason, the term for tradition \((\hat{\phi}_i)\) used in patch scoring is slightly different than the term \((\phi_i)\) used for the intake equation. When a goose surveys/scores the available patches, it factors in the number of years \((i)\) it has visited there previously. When a goose has visited a patch for at least 10 years, it is assumed that it is unlikely that the goose will fail to return (personal communication with Black). Therefore, when a goose has 9 previous consecutive visits to a particular site, the tradition term \((\hat{\phi}_i)\) will reflect a scoring that is equivalent to a patch of maximum biomass density (a value of 1, since \(v = 9\) and \(\tau = 2\), see equation \(\hat{\phi}_i\) in Table 2). The score will reflect the overall expected quality of a patch to the goose and is utilized in determining the best move by selecting the patch with the greatest overall score. The score is calculated by summing up the attributes of tradition, biomass, and reproductive success that each goose expects for each patch as shown in Table 2.
Table 2: The scoring equation and parameter values based on the influences of tradition and biomass, as well as previous reproductive success (for initial island selection).

<table>
<thead>
<tr>
<th>Equations & Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>$S_{t,j,s,i} = (\sigma_{\text{trad}} \hat{\phi}i) \lambda_1 + (\sigma{\text{explore}} \hat{\beta}_{i,j}) \lambda_2 + \rho_s \lambda_3$</td>
</tr>
<tr>
<td>Expected benefit due to tradition</td>
<td>$\phi_i = \tau \left(\frac{i}{i + \nu} \right)$</td>
</tr>
<tr>
<td>Biomass</td>
<td>$\beta_{t,j} = \beta_{t-1,j} - I_{t-1,j} + \eta$</td>
</tr>
<tr>
<td>Genetic value, predisposition</td>
<td></td>
</tr>
<tr>
<td>toward influence of tradition</td>
<td>$\sigma_{\text{trad}} = 50$ (base value)</td>
</tr>
<tr>
<td>toward exploration</td>
<td>$\sigma_{\text{explore}} = 50$ (base value)</td>
</tr>
<tr>
<td>Previous reproductive success count</td>
<td>$\rho_s = 0$ (base value)</td>
</tr>
<tr>
<td>Measure of influence of tradition</td>
<td>$\lambda_1 = 0.5$</td>
</tr>
<tr>
<td>Measure of influence per biomass</td>
<td>$\lambda_2 = 0.5$</td>
</tr>
<tr>
<td>Measure of influence of prior</td>
<td></td>
</tr>
<tr>
<td>reproductive success</td>
<td>$\lambda_3 = 0.3$</td>
</tr>
<tr>
<td>(Consecutive yearly returns for a)</td>
<td></td>
</tr>
<tr>
<td>substantial effect of tradition</td>
<td>$\nu = 9$</td>
</tr>
<tr>
<td>Maximum effect of tradition</td>
<td>$\tau = 2$</td>
</tr>
<tr>
<td>Day</td>
<td>$i = 1, 2, \ldots, 21$</td>
</tr>
<tr>
<td>Number of years at a patch</td>
<td>i</td>
</tr>
<tr>
<td>Patch/Cell</td>
<td>j</td>
</tr>
<tr>
<td>Island</td>
<td>s</td>
</tr>
</tbody>
</table>

When a goose first arrives on the staging area, the scoring equation includes a term (ρ_s) to determine which island the goose will choose. At this point, each goose (except yearlings, which follow their parents) will survey all the patches on all the islands, not just those on the island where the goose will remain for the duration of the
given season. Geese store a value for each island which serves to indicate prior reproductive success. The value increases if the island enabled a goose to successfully acquire sufficient energy reserves to meet the reproductive threshold, or decreases otherwise. This is an important term in an individual’s expected payoff because it suggests that adequate resources have been available previously which therefore may enforce a decision to return, or conversely, it has the potential to diminish from future prospects.

After selecting an island and patch, the geese will intake food according to the intake equation and update their energy reserves once a day. Following this daily update, all geese will decide, according to their present condition, whether to stay on their current patch, find a new patch, or leave the staging area to breed. These basic decision rules enable each goose to consistently optimize its fitness by maximizing energy reserves to ensure survival and promote reproductive success.

Validation

The model was run repeatedly with varying parameters to monitor and account for the range of possible behaviors. The patch scoring process and the intake equations were the priority in testing the model for appropriate results. The final equations and parameter values were determined when the model produced a stable population whose dynamics were consistent with those of the natural system. As previously mentioned, it was not the aim of this project to build an exact replica of a specific biological system; rather the goal was to create a realistic ecosystem where foraging behavior could be
examined at a basic level. From a general perspective, it can be shown that the model can provide pragmatic conclusions of overall trends in strategic foraging for systems that retain an affinity toward site faithfulness. To this extent, pattern-oriented analysis provides validation of the model system through verification that the model can reproduce the patterns that it was designed to address by identifying and testing hypotheses about how individuals behave (Railsback 2001). Since the fundamental focus of this study is to model the evolution of traditional foraging strategies, the ability of the model to represent patterns of traditional behavior and the factors that primarily influence the behavior has been observed with properly calibrated model procedures and parameters (as discussed in the following section).

Parameterization

Default values and controlled settings that were found to realistically simulate the system were maintained throughout experimentation. The size and structure of the environment, as well as the global limits and weights for the geese were kept constant. The spatial landscape is composed of two distinct islands where the geese choose to forage. The ‘main’ island (where the initial geese traditionally go) maintains a cell count of 429 patches with a distribution of patches following the biomass profile shown in Figure 3a. The alternate island consists of 399 patches with a mean biomass that is reduced by 0.2 or 20% from that of the distribution of the main island (Figure 3b).
An initial population of fifteen geese was chosen to allow for sufficient growth and stability (under optimal conditions). The ages of these individuals are normally distributed with a mean of 7 and standard deviation of 1. Because these agents have nothing inherited and lack previous experience, the model results are not meaningful until the population has adequate time to develop. The default values are set at 50 for both the tradition and exploration influence genes, and are tracked temporally. These values are initially set equal in order to balance the scoring equation (along with the other parameters) so that there is no innate preference in site selection for the first generation, causing initial decisions to be based solely on the available vegetation and consecutive visitation (without predisposition for one or the other). Subsequent generations will deviate from these base values as mutation (random floating point values from -1 to 1 that are added to the values) affects the genetic transmission from parent to offspring. Since the genetic values impact site selection, which inevitably influence survival and reproductive success, an evolutionary trend will tend to favor values that produce a stable population.
To this extent, the reproductive threshold becomes an important component of the emergent behavior through natural selection. For scenarios with an undisturbed environment and where habitat removal was simulated, this threshold was set at 70 units of energy, as a minimum amount of energetic reserves found to be attainable from a goose that is either able, within a season, to forage on patches with at least 80% vegetative density with no prior visitation, or a goose that has returned to the same patch of at least 60% biomass for three consecutive years. This numerically determined reproductive threshold maintains a small, competitive population with a tendency for site faithfulness, as suggested by the empirical evidence that the chance of reproductive success is increased after returning to the same sites in spring for at least three years (Black et al. 2006). For the experiments where habitat density was frequently redistributed across patches within an island, the amount of energy reserves expected to be necessary for successful reproduction was adjusted to a value between 60 and 70 for each specific circumstance of disturbance. This was done in order to sustain an age diverse population (since dominance affects site selection), and enable an evolutionary trend of foraging strategies to emerge.

The measures of influence in the patch scoring equation were also determined through rigorous calibration as they serve to keep the factors of site selection within a reasonable balance of each other. Referring back to the patch scoring equation, the model was run with each combination of global scalars from 0 to 1, incremented by 0.1. From these simulations, it was determined that the resultant behavior was not skewed toward one strategy or another at values where $\lambda_1 = 0.5$ (influence of tradition), $\lambda_2 = 0.5$
(influence of exploration), and \(\lambda_3 = 0.3 \) (influence of reproductive success). These terms allow the geese to take into account all relevant information within the model with the necessary emphasis to influence decisions based on expected payoff. The inclusion of environmental fluctuation provides a situation that may undermine this expectation.

As previously mentioned, the geese benefit through their familiarity of a patch based on daily residence as well as yearly consecutive returns. The daily increase in the proportion of biomass consumed (\(\alpha_i \)) was derived from empirical data (Black et al. 2006) and applied in the context of the model, where on first arrival to a patch geese would intake a fraction, 0.65, of the available biomass (\(\theta \)) at that location, with an increasing rate of nearly 0.20 (\(\mu \)) per day (\(t \)). Tradition (being site faithful on a yearly basis, \(\phi_i \)) is included in the intake equation to provide an addition to the amount of food that may be acquired through an asymptotic function of consecutive returns to a specific patch. A similar term is taken into account during site selection in the scoring equation, since a patch that has been previously visited is more desirable. Immediately when a goose lands on a patch it stores the location and increments its’ memory of visits (\(i \)) by one; therefore to account for memory from prior visits (and not the current visit), one needs to be subtracted from (\(i \)) when using it for intake (\(\phi_i \)), but not when surveying patches for expected payoff in the scoring equation (\(\hat{\phi}_i \)). The tradition function in the intake equation asymptotically approaches \(\tau = 2 \) and reaches half of this limit in the fourth year of consecutive visitation (when \(n = 3 \)). These values were chosen carefully to provide a benefit for prior knowledge of a location and are based on empirical
observation that geese who return to the same sites in spring for at least three years have an increased chance of reproductive success (Black et al. 2006). The intake equation is a daily rate for the 20 day (γ) spring stopover period. When factored into the energy reserves (E_j), the intake value ($I_{t,i,j}$) is converted into energy by a multiplier $\delta = 40$ which is used to track and analyze individual fitness with respect to the reproductive threshold. After the geese update their energy reserves, the amount of biomass on a patch is reduced by the amount from the intake equation, and grows back at 0.10% ($\eta = 0.001$) each day.

The temporal component of the program is the primary driving force of the model. It is subdivided into day, season (20 day stopover), and year, to ensure that the agents adhere to the schedule de rigueur. Mortality results from old age (geese will not live passed 20 years of age), starvation (when an agent has no energy reserves), and other natural causes that are pooled together and represented by an age dependent mortality probability. According to the literature, there is a low survival probability for newborn geese prior to arriving at the wintering location (Pettifor et al. 2000, Black et al. 2006). Therefore, geese less than 1 year of age are subject to 80% mortality, between 1 and 12 years geese are much more resilient and have a 5% death rate, and for those beyond age 12, there is a 20% mortality rate due to senescence. As predicted from hypotheses concerning the costs of reproduction, reproductive success has a negative effect on survival in this species (Black et al. 2006), but for simplicity it is not modeled here.

With the turning of a year (after spring staging), the model is updated with births, deaths, and aging, which restructures the population and therefore the dominance
hierarchy. When the geese arrive at the staging area, they are uniformly reduced to 15 units of energy in reserve. This assumption allows for the performance of each agent during the three week period to determine their subsequent success, rather than confound the results with variable initial conditions. Likewise, for simplicity, the energy expenditure ($\kappa = 1$ unit per day) is equal for all individuals, since it is assumed that patches on each island are reasonably close in proximity. In this regard, according to the intake equation, geese that remain site faithful for many years will reap a slight benefit even if the patch biomass is suddenly degraded, since no time would have been spent exploring (essentially reducing the energy expenditure). Throughout a model simulation, geese make decisions according to their unique status, memories and disposition, and the aforementioned scoring and intake equations. Every individual in addition to the collective behavior can be tracked by the user through extensive data output.

Output

The model was built to output life histories of each individual in each simulation. The data is recorded in four separate files, daily statistics, annual statistics, lifetime summaries, and overall census reports. Individual goose identity is maintained through a distinct value that is assigned to each goose at birth; therefore these data can be assessed in chronological order. All of the characteristics of each individual are tracked and categorized by this method of identification. The specific information for each file type is shown in Table 3. Life histories (lifetime statistics) were generally the most useful in assessing model results.
Table 3: Data output by file type. Daily, Annual, and Lifetime statistics are categorized by goose identification number and written in the end of each period.

<table>
<thead>
<tr>
<th>Daily</th>
<th>Annual</th>
<th>Lifetime</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>- year</td>
<td>- year</td>
<td>- age of death</td>
<td>- year</td>
</tr>
<tr>
<td>- day</td>
<td>- age</td>
<td>- year (birth & death)</td>
<td>- population count</td>
</tr>
<tr>
<td>- age</td>
<td>- island</td>
<td>- total reproductive success</td>
<td>- births</td>
</tr>
<tr>
<td>- island</td>
<td>- reproductive success count at island</td>
<td>- reproductive success for each island</td>
<td>- deaths</td>
</tr>
<tr>
<td>- patch coordinates</td>
<td>- energy reserves</td>
<td>- lifetime tradition count</td>
<td>- mean biomass of all patches</td>
</tr>
<tr>
<td>- current biomass of</td>
<td>- tradition count</td>
<td>- lifetime defection</td>
<td>- mean biomass for each island</td>
</tr>
<tr>
<td>patch</td>
<td>(sum of consecutive returns to patches)</td>
<td>- gene for tradition</td>
<td></td>
</tr>
<tr>
<td>- intake rate</td>
<td>- defection (sum of deviations from traditional patch)</td>
<td>- gene for exploration</td>
<td></td>
</tr>
<tr>
<td>- energy reserves</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experiments

The aim of this model is addressed by simulating environmental fluctuation to investigate effects on traditional foraging. Because this behavior is manifested through innate and learned decision mechanisms, experiments were designed to produce consequential response behavior. The results presented in this paper will reflect the overall dynamics produced by habitat variation on this model species, in addition to the evolution of genetic traits which result from the correlation of tradition with reproductive success.

All experimental simulations use the parameters described above and listed in Tables 1 and 2 to produce the resultant model behavior. The control environment maintains the default spatial structure (described in the environment and parameterization sections). This is an unperturbed simulation that represents behavior under optimal conditions. Other experiments included some level of environmental fluctuation, where every viable patch on the main island was subjected to some variation in the normal
biomass density. Such events have been observed in some of the Norwegian archipelagos that experienced large numbers of over-wintering water voles that temporarily removed and destroyed grassland vegetation (Prop et al. 1998). To simulate this type of scenario, a period of degradation or blight (i.e. removal of vegetation) was imposed on the main (traditional) island over the course of one, five, and ten years, all beginning at year 250 to allow for a stable population to become established. For each of these periods, different scenarios were simulated where the habitat quality was fully (100%) or partially (50%) reduced at a rate according to the duration of blight. After this period, the biomass was returned to its normal density with a 10% annual biomass growth rate.

Additional experiments were devised to alter the environment without depleting the available biomass. In these cases, the mean density from all the patches in the island remains the same, but each patch gets reassigned a new amount of available biomass. This redistribution of patch vegetation has an effect which negates the benefit of tradition, and provides more insight into response behavior and decision trade-offs, given a drastic change in the expected payoff of a specific location. Patch biomass was varied across the main island in five different scenarios, with frequencies of every 3 years, every 5 years, every 7 years, every 10 years, and every 15 years.

Twenty five replicates were done for all experiment scenarios, and each simulation was set to run for 500 years. The output was examined for variability within and between the model simulations, and averaged (where possible) for the graphical results. The primary aim was to observe the viability of a site faithful population.
RESULTS

The general population patterns clearly indicate dependence on the condition of the available habitat. The majority of simulations sustained steady population growth eventually showing small fluctuations about a stable equilibrium; however extinction occasionally occurred in the worst circumstances. During periods of optimal conditions, the average population would plateau and fluctuate at near 60 individuals (Figure 4a). In trial runs where the initial population was set greater than 60, it was noted that density dependent effects inherent to spatially explicit individual-based models caused the population to decline and hover around 60 (which can be considered a stable limit for this particular amount of available habitat). In the experiments that included any amount of environmental degradation (at year 250), the population obviously declined during the period of limited vegetation, however in almost all cases the population recovered and grew steadily, approaching what appears to be the previous population level by the 500th year (Figure 4b,c,d). The recovery progress was slow in most cases due to the specified 10% annual recovery growth rate for the biomass, in addition to some geese needing to familiarize themselves with new foraging grounds. The graphs in Figure 5 show similar, but less dramatic trends since these populations were subjected to a 50\% biomass depletion over (a) one year, (b) five years, and (c) ten years. Overall, removal of any proportion of the habitat had an initial negative effect on the population, similar to the results of Pettifor et al. (2000) whose annual model for the Svalbard population of the barnacle goose shows that any removal of habitat resulted in a proportional reduction in the size of the population.
Figure 4: Graphs of population versus time averaged for all the model replicates for (a) optimal conditions, (b) one year of full biomass depletion, (c) 5 years of full depletion, and (d) 10 years of full depletion. Blight (100%) was imposed at year 250 all runs.
Figure 5: Graphs of population versus time averaged for all the model replicates with 50% biomass depletion over (a) one year, (b) 5 years, and (c) 10 years. Blight was imposed at year 250 for all runs.
In all model runs the correlation of tradition, energy, and reproductive success was observed. As the geese aged and built experience, becoming more dominant in their competitive ability, they had more opportunity to choose among the best possible sites. This led to energy reserves that accumulate more with age and therefore showed an increase in reproductive success (measured in an increased number of offspring) (Figure 6), regardless of the foraging strategy employed (basing decisions on tradition and/or exploration). Under the circumstances, site fidelity (measured through counts of consecutive visits to specific patches) generally developed with age and experience (Figure 6 is for optimal conditions; however similar trends possessing a wider variance between individuals at each age were found under circumstances of habitat removal). In years of severely degraded habitat, geese failed to meet the required energy reserve reproductive threshold which resulted in very few births, in addition to a dramatic decrease in survival. The reduction in these numbers could be attributed to individuals failing to deviate from locations that lacked the necessary sustenance, or not being able to occupy new sites of significantly greater quality. Investigation into the evolution of the genetic influences helps to substantiate these observations.
Figure 6: Without environmental degradation, this is the range of individuals at each age with their energy reserves, total offspring (lifetime reproductive success), and tradition (counts of consecutive returns). A trendline was applied with a weighted regression to provide an idea of the correlative relationships.

The life history output is written at the time of death of an individual, and provides the age with tallies of offspring and consecutive returns over the course of the lifetime, as well as the ‘genotype’ (values for influence of tradition and exploration). This information is crucial for reporting the resultant trends from each simulation, and provides a measure for comparison. Because the age of death varies, the number of consecutive returns is averaged over the course of one’s lifetime (tradition count divided by age of death) in order to standardize a value of tradition. This value may be the same for an individual that dies young, but returned to the same patches each year, and an individual that lives longer with very little tradition. It becomes a useful measure when it is compared with the number of offspring produced by each individual annually (annual reproductive success (RS)). The graphs in Figure 7 represent this relationship between
tradition and number of offspring, in addition to the overall lifetime reproductive success (LRS, total number of offspring over the course of one’s lifetime) with respect to the total lifetime count of consecutive returns (the total number of consecutive returns to any one patch over the course of one’s lifetime). Here it can be shown that site faithfulness has more of an impact on reproductive success under optimal conditions (with no blight), than in a circumstance when traditional patches have fully (100%) deteriorated. In the latter case, failure to deviate from a routine (to an extreme) seems to affect annual and lifetime reproductive success. This observation is supported by the Pearson correlation coefficient (Table 4) which measures the degree of linear relationship between two variables (with values closer to one indicating a strong positive correlation).

Table 4: Pearson correlation coefficients for the effect of tradition on reproductive success (RS) with full (100%) biomass depletion

<table>
<thead>
<tr>
<th>Full Biomass Depletion</th>
<th>Lifetime RS with Tradition</th>
<th>Annual RS with Tradition</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.971</td>
<td>0.927</td>
</tr>
<tr>
<td>1 Years</td>
<td>0.962</td>
<td>0.918</td>
</tr>
<tr>
<td>5 Years</td>
<td>0.955</td>
<td>0.911</td>
</tr>
<tr>
<td>10 Year</td>
<td>0.939</td>
<td>0.894</td>
</tr>
</tbody>
</table>
Figure 7: Plots of the mean number of offspring at each level of tradition (annual and lifetime), with (a,b) no disturbance, (c,d) 1, (e,f) 5, and (g,h) 10 years of full blight.
The effects of the genetic drift on the traits that influence site selection provide insight into the evolution of foraging strategies by means of natural selection. The graphs in Figure 8 show the progression of genotypic values associated with individuals chronologically ordered by year of birth. They demonstrate trends in the genotypic values between scenarios of habitat removal and redistribution. Since the initial value for each trait was set at 50, deviations in each gene are considered separately (with mean and variance calculations) as well as with respect to each other (given through ratios of tradition to exploration) (Table 5). In the patch scoring equation, these influences significantly affect the desirability of a patch based on tradition or site quality, and slight differences can affect a decision.
b) Genetic Influence Values for Individuals in Order of Birth (1 year full blight)

Genetic Influence Values for Individuals in Order of Birth (5 year full blight)
Figure 8: Genetic progression for individuals’ according to year of birth with the values for the influence of tradition (weighted value for choosing a site based on the number of previous visits) and influence of exploration (to seek out a higher quality patch). The plots are for specific simulations with (a) no blight, (b) 1 year, (c) 5 years, and (d) 10 years of full (100%) biomass depletion.

These data represent a theoretical perspective on the relative strength of the factors of importance in habitat choice. Unique to each situation of environmental quality, the distribution of conspecifics, and ones’ own fitness, this measure could not be quantified across model simulations (with the same parameters). It is interesting to note the overall trends between and for each trait by examining the variance within populations of the mean genetic values over the total number of geese in 500 years of existence and after the blight at year 250. The ratio of the values of tradition to exploration offers a good idea of the factors of influence, relative to each other. The statistics for all the graphs shown (Figures 8 & 9) are summarized in Table 5. This information provides insight into the evolutionary progression of foraging strategies.
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Genetic Influence</th>
<th>Total Population</th>
<th>Mean (500 yrs)</th>
<th>Variance (500 yrs)</th>
<th>Ratio (trad/exp, 500 yrs)</th>
<th>Population After Year 250</th>
<th>Mean (after 250 yrs)</th>
<th>Variance (after 250 yrs)</th>
<th>Ratio (trad/exp, after 250 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (no blight)</td>
<td>tradition</td>
<td>11519</td>
<td>51.952</td>
<td>7.165</td>
<td>1.04178</td>
<td>6363</td>
<td>53.087</td>
<td>6.807</td>
<td>1.06729</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>49.871</td>
<td>4.992</td>
<td></td>
<td></td>
<td>49.740</td>
<td>5.815</td>
<td></td>
</tr>
<tr>
<td>1 year full depletion</td>
<td>tradition</td>
<td>8498</td>
<td>51.762</td>
<td>5.697</td>
<td>1.08004</td>
<td>3208</td>
<td>52.941</td>
<td>5.640</td>
<td>1.12686</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>47.926</td>
<td>3.193</td>
<td></td>
<td></td>
<td>46.981</td>
<td>2.528</td>
<td></td>
</tr>
<tr>
<td>5 years full depletion</td>
<td>tradition</td>
<td>9103</td>
<td>48.851</td>
<td>2.887</td>
<td>0.92731</td>
<td>3740</td>
<td>48.234</td>
<td>2.307</td>
<td>0.88875</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>52.681</td>
<td>4.861</td>
<td></td>
<td></td>
<td>54.272</td>
<td>3.123</td>
<td></td>
</tr>
<tr>
<td>10 years full depletion</td>
<td>tradition</td>
<td>7202</td>
<td>47.709</td>
<td>10.288</td>
<td>0.94762</td>
<td>1782</td>
<td>43.246</td>
<td>3.374</td>
<td>0.83167</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>50.346</td>
<td>4.578</td>
<td></td>
<td></td>
<td>51.999</td>
<td>2.003</td>
<td></td>
</tr>
<tr>
<td>Redistribution at 3 years</td>
<td>tradition</td>
<td>4281</td>
<td>45.546</td>
<td>6.042</td>
<td>0.86784</td>
<td>2954</td>
<td>44.329</td>
<td>2.460</td>
<td>0.83209</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>52.482</td>
<td>4.273</td>
<td></td>
<td></td>
<td>53.274</td>
<td>2.872</td>
<td></td>
</tr>
<tr>
<td>Redistribution at 5 years</td>
<td>tradition</td>
<td>4629</td>
<td>47.420</td>
<td>5.218</td>
<td>0.90396</td>
<td>2330</td>
<td>46.503</td>
<td>3.591</td>
<td>0.87235</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>52.458</td>
<td>5.686</td>
<td></td>
<td></td>
<td>53.308</td>
<td>5.822</td>
<td></td>
</tr>
<tr>
<td>Redistribution at 7 years</td>
<td>tradition</td>
<td>3272</td>
<td>48.641</td>
<td>2.236</td>
<td>0.93077</td>
<td>1733</td>
<td>48.052</td>
<td>2.036</td>
<td>0.90671</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>52.259</td>
<td>2.549</td>
<td></td>
<td></td>
<td>52.997</td>
<td>2.232</td>
<td></td>
</tr>
<tr>
<td>Redistribution at 10 years</td>
<td>tradition</td>
<td>3666</td>
<td>50.612</td>
<td>3.414</td>
<td>0.95311</td>
<td>1807</td>
<td>50.857</td>
<td>4.107</td>
<td>0.93952</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>53.102</td>
<td>4.584</td>
<td></td>
<td></td>
<td>54.131</td>
<td>4.998</td>
<td></td>
</tr>
<tr>
<td>Redistribution at 15 years</td>
<td>tradition</td>
<td>4264</td>
<td>49.466</td>
<td>3.622</td>
<td>0.96483</td>
<td>2297</td>
<td>49.694</td>
<td>3.983</td>
<td>0.94216</td>
</tr>
<tr>
<td></td>
<td>exploration</td>
<td></td>
<td>51.269</td>
<td>5.987</td>
<td></td>
<td></td>
<td>52.745</td>
<td>4.557</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: The descriptive statistics for the values of genetic influence (tradition and exploration) for an entire simulation of 500 years as well as the last 250 years. The mean, variance, and ratio for tradition and exploration, in addition to the total number of individuals, are given for experiments with optimal conditions (control), full (100%) habitat removal over 1, 5, and 10 years, and habitat redistribution at every 3, 5, 7, 10, and 15 years.
The results in Table 5 reveal that the underlying factors that influence site selection are dependent on the duration and frequency of habitat disturbance. Comparing the scenarios of optimal conditions to increasing degradation or fluctuation, it appears that those individuals with more of an affinity (greater genetic value) toward an exploratory strategy tend to survive to reproduce, since the ratio of the mean values of tradition to exploration decrease as blight and redistribution time increases. The ratios for the last 250 years, with time and circumstance having a greater affect on the surviving genetics, indicates that exploration is favored in scenarios with significant disturbance.

The experiments where patches were reassigned an available amount of biomass (redistribution) provided interesting insight into responses to frequent changes in the expected available habitat at specific locations. In these cases it was clear that traditional foraging was not an evolutionarily stable strategy. As discussed in the Parameterization section, the reproductive threshold was adjusted for these experiments. For the scenario of habitat redistribution at every 3 years, the required energy reserves necessary to reproduce was 60 units. At a redistribution frequency of every 5 years, the reproductive threshold was 62, at every 7 years it was 64 units of energy, at every 10 years it was 66 units, and at every 15 years the threshold value was 68 units of energy reserves. The realizations of these genetic trends in the event of habitat redistribution are shown in Figure 9 with the descriptive statistics in Table 5. Overall, an adequate response to disturbance seems to be dependent on the length of time that an area is affected. With longer or more frequent changes to the environment, geese will generally deviate from tradition in favor of exploration for a patch with more available biomass.
Genetic Influence Values for Individuals in Order of Birth (redistribution every 3 yrs)

Genetic Influence Values for Individuals in Order of Birth (redistribution every 5 yrs)

Genetic Influence Values for Individuals in Order of Birth (redistribution every 7 yrs)
Figure 9: Genetic progression for simulations with a redistribution of biomass (a) at every 3 years (with a reproductive threshold, RT of 60), (b) at every 5 years (with an RT of 62), (c) at every 7 years (with an RT of 64), (d) at every 10 years (with an RT of 66), and (e) at every 15 years (with an RT of 68).
DISCUSSION

As predicted from model assumptions, the results suggest that under severe habitat deterioration, individual foraging performance is hindered, which has an effect on the acquisition of energy necessary to reproduce, and in some cases to survive. As seen in the aftermath of the water vole invasion, those geese that remained on the affected archipelagos failed to breed for a number of years until the vegetation recovered (Prop & Black 1998). It is those individuals that are capable of strategically adapting to environmental changes and consequentially optimize their fitness who eventually influence the gene pool. For some individuals however, they may benefit from maintaining their once successful routine in hopes that the environment recovers within an acceptable amount of time. By not deviating from the familiar sites, in the event of the return of suitable habitat, those geese will not have to spend time learning about their new surroundings in order to maximize intake. To this extent, empirical observation indicates that the chance of reproductive success is increased after returning to the same sites in spring for at least three years (Black et al. 2006). The model generates this effect primarily in younger geese that are unable to occupy patches that provide sufficient energy gain due to the dominance hierarchy. When an individual forages on a mediocre site or a site for the first time, they most likely will not be able to meet the energy threshold required to reproduce. The model assumptions for the benefit of practicing a traditional strategy, increased efficiency through familiarity (Figure 2), have an impact on decisions for site selection.
“The intake rate that individuals experience will depend upon a complex interaction of the quality of the chosen patch, its foraging efficiency, the amount of competition within the patch and its susceptibility to interference” (Goss-Custard & Sutherland 1997). Our modeling approach reflects this dynamic behavior as a bottom-up simulation of the effect on the total population of the factors that uniquely influence the fitness of each organism. The algorithm for site selection pivots on a simple weighted judgment based on learned behavior/experience, instinct/genetic preference, physical and societal status, and the resources available. If a decision propagates one’s survival to a subsequent time step, its outcome inevitably contributes to the model’s emergent behavior. The resultant patterns at the population level provide insight into the significance of the underlying mechanisms and thus serve to enhance our awareness of the system dynamics, animal behavior, and overall ecological progression. Based on these findings and model predictions, we can develop approaches for the management and conservation of this and similar populations.

We believe that our model realistically captures the essential biological features of foraging animals. The implications of habitat loss have been previously illustrated through population-based models in addition to those that incorporate individual variation (Sutherland and Dolman 1994, Goss-Custard et al. 1996a,b, Pettifor et al. 2000). Density dependent effects have also been extensively demonstrated (Lang et al. 1998, Rowcliffe et al. 1999). The effects of energy on reproductive success (Prop & Black 1998, Prop et al. 2003) and dominance (Caldow et al. 1999) with respect to distribution, site selection, or resource accumulation have also been sufficiently documented. Our findings fit well
with the conclusions of similar modeling efforts expounded in the literature. The inclusion of tradition in the context of foraging (and not just breeding) has recently been explored. Matthiopoulos et al. (2005) noted that different types of population dynamics and patterns of colonization occur, depending on the strength of site fidelity. While it is known that site faithful behavior can be maladaptive under temporally and spatially heterogeneous environments (Cooch et al. 1993, Matthiopoulos et al. 2005, Schmidt 2004), questions of the underlying mechanism have yet to be thoroughly considered. This model will enable further investigation into traditional foraging strategies with the genetic evolution of behavioral traits combined with other mitigating factors which influence site selection.
REFERENCES

Prop J., Black J. M. & Shimmings P. 2003, Travel Schedules to the High Arctic: Barnacle Geese Trade-off the Timing of Migration with Accumulation of Fat Deposits, Oikos 103, 403-414.

