Interview with Dr. Jack Yarnall
Interviewers: Christina Medina and Joseph Freeman
April 3, 2004

CHRISTINA MEDINA: Hi, this is Christina Medina and Joseph Freeman and we’re doing an interview with Jack Yarnall and please state your position.

JACK YARNALL: Well, I’m retired now, but I was a Humboldt State biology professor from 1969 up through ‘93.

CM: Where are you originally from?

JY: I grew up in New Jersey and Pennsylvania, a little bit west of New York City and so (in exaggerated Jersey accent) I’m from the place were birds are chirpin’ on the curb at thirty-third.

CM: What college or colleges did you attend and why did you choose those colleges?

JY: Well, I got out of high school in 1949 and my family and I sort of agreed that I should go away to school, preferably some distance away. So I went to University of Montana at Missoula and I spent four years there and got a degree in forestry. And during that time the Korean war was on and so I was in the Air Force R.O.T.C. and I got a commission when I graduated in June of ’53 and then I spent five years, a little over five years, in the Air Force and then I got out and went back to school at Missoula, got a masters degree in teaching, since I decided I didn’t want to be a forest ranger etc. And while I was there I had the opportunity to make some trips to the west coast and looked at marine stuff there and I got really stoked and I got a chance to go to Stanford and I worked on a PhD down there. Came up here to Humboldt in ’69.

CM: Other than forestry and biology, what other subjects did you major in?

JY: Well, that is pretty much it as far as you know academic sorts of stuff. The Air Force taught me how to fly so that was a good deal and I spent a number of years flying smoke jumpers and dropping cargo and fire retardants during the summer and that’s what sorta kept body and soul, that is, together, that is, made money, so I had that as another sort of career.

CM: How long did it take you to earn your degrees and your teaching credential?

JY: Oh boy, well, I started in, let’s see, I started in, like I said, in ’49 and I got in four years with a forestry degree. I went back in the fall of ’59 and the combination of going to school and flying and so on it was ‘69 before I came up here.

CM: So why did you decide to become a biology professor at Humboldt University?
JY: Well, when I got my degree essentially in marine sort of things down at Stanford, I was looking for a job and I kinda drew a line at Santa Barbara and I said I wouldn’t go any further south than there and I wanted to be on the coast and Humboldt State had an opening and I applied. It wasn’t like they hire people now were they had these big, long, interview processes. I had submitted my application up here and I got a call about two weeks later from David Lauck, who was the then chairman of biology, says “Yarnall you want the job, it’s yours”. And I said “Can I have a little time to think about it”, because I had other applications I was had submitted or was getting ready to submit and he says, “You got 24 hours”. So I called him back after I’d talked with my wife and here I am.

CM: What was the job hiring process like at Humboldt University?

JY: Well, that’s pretty much it. What I just said. I submitted an application and they read through it. A couple of people had seen me give a paper or two at a scientific meeting but that was it. It was just call up on the phone and hire. You have to remember that, at that time Humboldt State was growing and growing very rapidly. They really needed a lot of instructors. The year I was hired, there were, in ’69, there were, I think about 100 new tenure-track faculty hired and that’s at a time when the total faculty was somewhere around, I think, 250 or so. It is a lot less then it is now. There were six of us who were hired in biology that same year. One guy left after one quarter and the rest of us stayed ‘til we retired.

CM: Approximately, how many students attended Humboldt University when you began teaching?

JY: Oh boy now you’re asking me to go back. I’m guessing, and you need to go back and look at the data for ’69, but I’m guessing around 6,000, but I don’t remember. I know the biology department, we were full, you know, we had, we were running Saturday laboratory sessions and laboratory classes for our beginning biology course until 10:00 at night, you know, five days a week plus the Saturday stuff so we were going full out.

CM: What was your first couple of years at Humboldt like?

JY: Well it was like any sort of new job, I think, you have to learn, you know, what kind of organization you’re working with. I really liked the students. I’d done a bunch of teaching before as a graduate student at Stanford. And I kind of had an idea of that and I was fortunate enough I really loved invertebrate zoology, which is all those crunchy and slimy things that grow in the ocean, those animals out there. And they, so I had a chance to work with them. And we had the marine lab at Trinidad, which made it really nice because we had running sea water in the labs and therefore we didn’t have to deal with any pickled animals. We did use some microscope slides but, you know, instead of something just lying there and you poke around and open it up, you could sit there and watch these little guys swimming and their hearts beating and all of this sort of thing and it was great and the students were good and were lot of fun. So the combination made it
really pretty nice. The big part of the work is trying to get courses organized and figure out what’s working and what isn’t working and that takes awhile and so on. But by and large it was a lot of fun.

CM: In 1969, it was Humboldt’s first time doing class registration on a computer. Before computer registration, how would students register for classes?

JY: Well, students, you know, each course had a certain number of seats available in it and they would make up a cards for those, one card, for each course, for each seat, or for each seat in each course. And you had what was called an arena or gym registration, they would go over, over to the east gym and every department would have a big table and they would have big box of cards and if you wanted to take a biology course or a botany course or zoo course you went and stood in line in front of the person sitting in front of that box of cards. And you went in there and you ask that person, “I want to take zoology 110”, which is the beginning zoo course. And they would say, “O.k. there is an opening for the lecture at 10:00,” and there’s labs that are available. And there might be several labs and so you would pick up a card for your course and a card for the lab. And that, when they ran out of cards they ran out of spaces. So that was sort of it. It actually was not a bad system in a lot of ways because it allowed you, if you couldn’t get the course you wanted right then, you could make a choice about what was available and when you went away, you knew exactly what courses you had. It wasn’t the case of turn your stuff to this amorphous computer back there, you know and so on.

CM: How did students and staff feel about the new registration process?

JY: Well, it wasn’t computer registration. It was supposed to be computer-assisted registration and like any new sort of system it had a number of headaches and glitches in it, but it, you know, it gradually worked its way out. It’s like anything, you know, and particularly in the biological world, we understand this, you either adapt or die. And so this is a matter of change as it was coming along. And from what it looks like now, it looks like the current computer registration system which is full blown online is a much better system than that. But what we had was just a transition from the old mechanical system to the current sort of arrangement.

CM: When you began teaching, the United States was involved in the Vietnam War. How did you feel about the U.S. involvement in the war?

JY: Well, remember you gotta remember I was an old Air Force pilot and while I had a lot of sympathy and support for the guys who were there, I really thought we were there for the wrong reasons and that particularly as the war went on and certainly the campus reflected that sort of thing. I don’t think I was as rabid in these views as were as a lot of other folks around the campus, but I certainly didn’t think we should be there and I think it was a mistake to have gone there. We should have recognized that the domino theory that was put forth by Nixon and McNamara and a variety of others really didn’t hold to the degree that they thought it would and also that the communist regime that was in Vietnam was a locally communist regime. It was not some part of the great huge global
sort of thing. You know, but that is hard to convince people of and we’ve got similar kinds of problems now with the Muslim world.

CM: Did you participate in any anti-war protests or the one week long strike against the war?

JY: You know, I did participate in some ways. I told my students at the time, that I, you know, I was in sympathy with them, but that I had an obligation to also serve those students who were not in sympathy with the protest and the strike. And what I did was, I said I will continue to give lectures and hold laboratories for my classes but for those of you who would like to go out, I will not penalize you and what I did was over the week or so that the strike ran, I published a list of very detailed notes and explanations of everything we did in class. I think it ran for the week, it ran something like thirty-three or thirty-five typewritten pages. And so I handed that out to anybody who wanted it. And so that was my sort of accommodation to the arrangement.

CM: Do you believe it’s important for professors to participate in anti-war protests with their students?

JY: I think that is a matter of personal conscience. I think you need to separate what you are as an individual and what you are as a university professor and a representative of the university. I feel a contractual obligation to hold classes as I have been asked to do and I have agreed to do, because in spite of the fact that the preponderance of student opinion was in favor of the protests, it was not universal. And so I would, if I denied my services as an instructor then I was also denying those people their right to expect me to do my job. So that’s the reason why I did the things that I did with regard to the class. I also did as person, I walked around, carried a sign, not frequently, but, you know, participated in that way as an individual, but not as a university instructor.

CM: The Humboldt Peace Center in Eureka offered counseling for men facing the selective service or draft. Did Humboldt University provide any on-campus counseling for students?

JY: You know, I think so. No necessarily authorized by the university per se, but there may have been, there was a lot of that kind of thing going on. And I’m not sure who was sponsoring and who wasn’t and there was certainly plenty of opportunity for students who wanted to avoid the draft or whatever else to learn about what their options were and how to deal with that.

CM: Did the war and draft affect the class room atmosphere in anyway?

JY: Oh yeah. I think the classes that were in the social sciences, in particular history, geography, political science and so on were much more intimately affected because they are dealing with the subject matter of that sort of thing. But, oh no, there was great turmoil and agitation and students were concerned about it and so were a lot of the
faculty and there was a real range of faculty opinions and so on. So it was a time of controversy, it was an interesting time.

CM: The Red Scare affected many college campuses around the nation. How did the Red Scare affect Humboldt University?

JY: You know, it got the campus much more active I think in political and social events that it had been in the past. And that’s the campus as a whole. The issues that were brought up, particularly the military-industrial complex and the, you know, the business of whether the war was right or wrong and the damage that was being done by the war both in Vietnam and also here in the U.S. You know, I grew up in the area when Mario Savio was around at Berkeley. And you may not recognize that name, he died just a few years ago but he was the guy who started the free speech movement on the Berkeley campus and it grew like crazy, across the whole academic arena, across the country, but particularly in Berkeley and areas like that. So we were not immune to that.

CM: The biology department created the *Stomatopod* journal for non-biology majors. Were you involved in the creation of the *Stomatopod*?

JY: It is the “*Stomatopod*”. Ok, S-T-O-M-A-T-O-P-O-D. Stomatopods are little shrimp-like creatures called Manta shrimp and they, there are some of them that get pretty good size, eight or ten inches long. And they are very good eating but they are also very tigerish and they called Manta shrimp because they have a couple of forelegs that they hold like a praying mantis. And they can cut animals in three parts by getting them across those arms when they are open and then just closing them, and so they’re interesting creatures. I was not a prime mover of the *Stomatopod*. I was involved in contributing some money at the beginning, but my friends, in particular, Gary Brusca, who is now dead, was a prime mover. He, if you look at the old issues of the *Stomatopod* and you read things by Warren Stalls—that is an anagram by the way, and I’ll let you figure out what the Warren Stalls anagram says—but that was Gary Brusca. He also wrote Alice the Sage Anemone you know, “Ask Alice,” and sea anemones are these are flower-like creatures that live attached to rocks and so on and so forth, up here. Anyway, the *Stomatopod* was a great venture and it sort of was a little bit counter-culture sort of approach to biological topics but with a lot of good stuff.

CM: Did you contribute any articles to the *Stomatopod* journal?

JY: I wrote a couple of little answers to things but that was about all I ever did.

CM: Can you recall any of the features of the *Stomatopod*?

JY: Well there was, like I said, there was “Ask Alice,” the Alice the Sage Anemone. And let me think, there were … I’ve got a couple of old issues downstairs in my office that I can dig up but that’s the only one I can think of. Then there was a comic strip and I can’t remember exactly what that was, but anyway it was a lot of fun.
CM: How long was the Stomatopod printed for?

JY: You know, I don’t remember exactly, 5 years or somewhere in that neighborhood.

JOSEPH FREEMAN (JF): What was your specialty while you were a professor at Humboldt?

JACK YARNALL (JY): Well, I was trained as an invertebrate zoologist with I guess an emphasis on mollusks. So, I had worked with nudibranchs and then with octopuses personally but the whole range of inverts was really what I did. And then I also used to teach the beginning biology course, what’s now BIO 105. It was called Biology 3 in the early days. And I also taught a course in ecological topics for non-majors as an upper division GE course. That was a lot of fun. We had a good time with that. And for one year I taught a course in human reproduction along with a nurse. We had a tremendous time with that. That was really, really a great time. So that’s kind of a sampling.

JF: What were your favorite courses to teach while at Humboldt?

JY: Well, Invert Zoo. would have to be at the top of the list. We—I did that once or twice a year and it was really an awful lot of fun. And like I said I enjoyed the students. I enjoyed the animals that we had to work with. It was essentially a chance for students in a lot of cases to try their hand at sort of independent investigation because I used to tell the students that for the lab part of the course I expected them to make intelligent and rational investigations of the animals that are provided for their study. And that was the sole criterion about what they had to do. So they could do anything they wanted—they could do anatomy and they could do behavior because we had live animals, and a whole variety of sorts of things. Reproductive stuff because a lot of times we could induce animals to spawn and that kind of thing. So, it was a good time. A lot of fun.

JF: Did you do personal research while you were at Humboldt? And if so, what kind of personal research?

JY: I did a little but not much. Most of my research efforts were—when I got up here—were centered on looking at a little bit of octopus behavior. But most of the research work that I did was associated with grad students.

JF: Other than the few things you helped with the Stomatopod, did you publish any works at all while you were a professor?

JY: Nothing really major or meaningful. I had published a couple of things when I, when I got here but I put most of my sort of out of the classroom efforts into being a campus politician.

JF: What was the department’s focus while you were at Humboldt?
JY: The idea that a student, an undergrad student who comes to Humboldt should get exposed to many different systematic or taxonomic groups of organisms, and that they should be exposed to many different ways of investigating them. So, things like morphology, physiology, genetics and all of these … behavior and ecology. All of those aspects, and so you can look at it as a grid with one of those lists on the side and the other one, taxonomic groups say, across the top. And you’d like to have as many of those boxes that you would then have filled in. The important thing, I think, was that students get exposed to lots of different approaches and lots of different taxa … groups of organisms. So, as a result of that, zoology students had to take at least one upper division botany course in addition to the lower division stuff. And the same with botany students; they had to take at least one upper division zoology course and the … I think the program tended to emphasize organismal biology rather than the molecular and chemical aspects, at least at first. But we didn’t ignore those. And the focus has changed a bit now. And I think it’s not necessarily bad. We still have pretty much an organismal approach to things. But it’s not exclusive. You know, this is like trying to put things in pigeon holes that don’t necessarily fit. The students are free to choose from a number of different options under biology. So they can choose an ecological approach or a cellular, molecular approach, as well as pre-med and pre-dental, and that sort of thing. So lots of different—and those were there when I first started as well. And that’s, I think, the mark of a well rounded and diverse department; and also a department of some size. In many universities you could have our biology department could easily be split up into botany, zoology, physiology, genetics, all as separate departments. But when you do that the departments get very small, and then it becomes difficult for them to function. There is an element of scale here that makes a lot of stuff work easier with this department our size.

JF: I am going to flip the tape now...

Side B of Tape 1

JF: Now did the department take a more theoretical approach or a hands-on approach? And what was your preference while teaching?

JY: Well, theory and hands-on, or practical, sorts of work have to go hand-in-hand. You can’t do one without the other and have a great deal of understanding that makes any sense. I like the hands-on approach and I like the theoretical approach. But I’ll give you an example, not from biology but from physics. The second law of thermodynamics says that energy is neither created nor destroyed, but it can be changed from one form to another and so on and so forth. And so I would ask students—you could teach students that but unless they could show you examples of it in practice and actually happening there isn’t any real understanding. It’s just a bunch of words that you mouth back and so on. So you know, I think that the ability to do both, to learn about theoretical approaches to things like evolution and the changes that have occurred over time, but you also need to be able to take an animal or plant apart or do physiological experiments with them in order to know exactly what’s going on. Otherwise what you get is just this sort of head knowledge and you don’t, and that’s not really the best.
JF: Was there a graduate school while you were at Humboldt? And what was that like and how did it compare to your own graduate school work?

JY: Well, the Cal State system, you know, grants masters degrees. But they don’t grant PhDs except in a few very limited instances in conjunction with the UC system. And none of that occurs on the Humboldt campus, so the grad school here is a masters program only and not a PhD program. And the program here is, is very good; at least in the areas that I had anything to do with. We expect a lot out of our students (telephone rings in background) and um, hang on just a minute. (telephone rings) … Anyway the quality of the research work that was done by our graduate students was by-and-large very good. Research is either good or it’s not. And there aren’t degrees of this. What differs between the masters sort of thing and the PhD is the scope of the research—or this is in my estimation—is the scope of the research rather than the quality. So, I think we do a fine job. We did a good job then and I think we do a good job now.

JF: What kind of activities or clubs did you get involved with while you were at Humboldt?

JY: Well, we had a biology grad students association. We had a little marine biology association and the—those were the sorts of things I was involved in there. I was involved also with a lot of student athletes because for a number of years I was the faculty athletic rep to the NCAA and to our athletic conference. So I got to know a lot of student-athletes, and appreciate the time and effort it takes to be a good student and a good athlete—and the real necessity for good time management.

JF: Why did you get involved with the sports?

JY: Oh, because I like it and because I was asked to do it at one time. And the more I did it the better I liked it. And so I’m still doing stuff with it. I score all the home basketball games here still. And I tutor student-athletes occasionally in biology. And, you know, I interview potential student athletes occasionally when, particularly if it looks like they’re headed toward biology. And just sort of act as a volunteer supporter for athletics, and to make sure that potential student-athletes who are looking to come here recognize that what they are here for is an education and that sports is a part of their life, but it’s not the only thing.

JF: How did the natural science department fit in with the rest of the school? And how did the administration treat it in terms of funding and the research support?

JY: Well there’s not—first of all I will take the research support. There’s not much support in the way of research support then and even now here for individual faculty research. Most of what’s done is done with, by external grants and we’ve been—various places across the campus have been very successful in garnering support for student-oriented research in particular. For a long while Humboldt was known as the sort of a forestry school with fisheries and wildlife and so on; the natural resources disciplines.
Part of that is because in the organization of the CSU as a whole under the 1960 master plan, every school was given a common list of majors that it would have. These include the standard liberal arts and sciences, plus business and teacher preparation, education department and so on. But it included things like anthropology and biology and chemistry, physics, history and political science and psychology and all that and English and music and art and so on. That laundry list had, for some campuses, an addition and in our case it was in the natural resources areas. So Humboldt is one of the two or three campuses out of the whole 23 campus system which has forestry, wildlife, fisheries and so on. So if you were a student, a potential student in California, and you wished to go to the CSU and wanted to major in those areas then Humboldt is where you came. Part of the reason for that is, of course, the natural surroundings that we have here. The environment in which Humboldt lives is ideally suited for looking at natural resources. We have the ocean on the west and we have the forests and the mountains and we’re not far from the deserts and so on. You can get to almost any environment that you really want short of a tropical rainforest you know, relatively quickly in comparison to other campuses. So the natural resources were looked at as sort of the greater among equals, if you want to put it that way, for a long while. But that position has been essentially not challenged, but that preeminence, perhaps, has been reduced a bit in part by the quality of, the growing quality of the other programs and departments. And the decline in, that occurred in the ’80s about and the ’90s, with regard to natural resources, the need for natural resources graduates—or the perceived need for natural resources graduates. So during the time when we were undergoing some budget pressures a number of years ago, back in the ’90s, or late ’80s and early ’90s, there was a great controversy across the campus about what the campus should look like in terms of disciplines and offerings. Were we going to be essentially a natural resources institute or were we going to be essentially a liberal arts college with natural resources too? And that argument was hard fought and engendered a lot of controversy.

JF: Why do you think in the ’80s that there was a lack of perceived need for biology majors?

JY: Well, when did Reagan become president? I think it was, you know, a reflection of the fact that we were changing from the viewpoints that came out and were strong during and right after the Vietnam War with a recognition by a lot of people that we needed to do more in the way of business and that sort of thing and that the environment was well enough taken care of and we didn’t need all of this.

JF: How did the biology department fit in with the rest of the sciences? And was it a popular area of study while you were teaching?

JY: Yes it was a very popular area. We had lots of people who wanted to be bio majors or one of the biological sciences. And when I say biology, recognize that I am talking about not just biology but the botany and the zoology area as well. And they were pretty well integrated together with the other sciences. If you want to look at living stuff as sort of a special state of matter and energy, then you need to understand physics and chemistry math and all of the rest of these areas. The sciences fit, I thought, pretty well
together. And we worked pretty cooperatively with each other and they still do. I want
to emphasize that. There are chemists like Bill Wood who work, do their chemistry on
biological stuff. You know, he’s going around looking at skunk odors and the chemistry
of biologically active compounds produced by things all the way from mushrooms to
deer and antelope and all of that sort of thing. So you know, the division of sciences in
that way and categorization of them is useful in a lot of ways, but in some ways it’s pretty
artificial. You can have somebody calling themself an oceanographer, for example, and
another one calling themselves a biologist and they may be doing and working on the
same things.

JF: In the mid ’80s the school switched from the quarter system to the semester system.
What was that like? Were there any problems with the faculty and the students? And did
funding change at all?

JY: How much time have you got? It was a decision that was—well it had lots and lots
of issues. First of all let’s look at the curricular issues. When you go from three
semesters to two—I mean, three quarters to two semesters, what it means is that you have
one less term that you have to deal with the mundane things of assigning laboratory stuff
and registration and so on. And so in that sense, you may in fact cut down a little bit on
the work load, in that sort of bookkeeping and kinds of things. But, if you think about
how you’re going to cover the same mass of material, the same knowledge base in two
semesters that you would in three quarters, this means that you either have to make—if
you keep the same number of courses—then you’ve got to pack one-and-a-half times as
many courses into a semester as you had in a quarter. So if a student was taking four or
five courses, then this meant they had to take six or seven or eight courses during the
semester. So does this spread the student too thin? Also, if you have this kind of
arrangement, if you had a three-unit course in a quarter system, that’s going to become a
two-unit course to remain the same proportional part of the curriculum. That means that
the faculty have to teach more courses. So instead of them teaching two or three courses,
now they have to teach four or five courses each semester to bring themselves up to the
number of class meetings, and the number of what we in the faculty call weighted
teaching units. One lecture for one hour is one weighted teaching unit, as an example.
Now, all of these things you’d think academicians would be able to solve relatively easily.
And nothing is further from the truth. If you take, for example, the business of the
number of courses—one of the things you could do is reduce the number of courses and
have then the remaining courses have similar number of units and the students meet
similar numbers of times a week. And instead spending ten weeks under the quarter
system they’d spend fifteen weeks so they’d have one-and-a-half times as much
intellectual content. Well the problem here is that if you’ve got various people teaching a
course, let’s say, you are teaching a course and I am teaching a course, and we need to
combine the information in these two courses, what, you teach my course? What am I
going to do? And all of this sort of thing. Now, in a few cases there were some changes
made that worked reasonably well. But, by-and-large the faculty are still teaching
courses that were designed to fit three, four or five units in the quarter system and they’re
teaching two, three or, rarely, four units under the semester system. I’ll give you one
case where things worked pretty well. We used to teach invertebrate zoology as two
courses. One was a major invertebrates course which was five quarter units. It met three lectures and two, three-hour laboratories a week. It was a big course. And then we had a smaller course called minor invertebrate groups which was three units; two lectures and one lab a week under the quarter system. So what we did is we combined those two courses and made a single invertebrate course. Now there’s a good curricular and logical reason because it makes sense to study the invertebrates as a whole bunch rather than have them split up. And what we did, we took the one five- and one three-unit course and made it into a five-unit semester course. It meets, still meets, three lectures a week and two laboratory sessions a week. And as far as I know it’s the biggest course anywhere in biology and perhaps anywhere on the campus in terms of contact hours. And that worked and so the three of us who were teaching inverts worked this out. We would teach the course once every third semester and so on. So I don’t know whether that makes sense or not. But the business of trying to change from quarters to semesters involves making enormous changes in curriculum. Look at the students who are going to go from quarters to semesters. Suppose there’s a required course and I took it under the quarter system. If I graduate under the semester system, does it still count? Does it have enough units? Does it cover enough territory? And so on. I was appointed at the time as the faculty member who was supposed to be the guru in the faculty of managing this transition. And I can tell you that I spent many hours having many discussions with irate faculty and angry students. And the general happiness level was not good. We’ve made the transition. One of the things, for example, that comes about as a result of this is that instead of starting at the end of August, or the beginning of September—I mean toward the end of September and running though the end of May and having graduation in the middle of June, we now start in the end of August and graduate the middle of May. Now for those of us in biology, reproduction is one of the things that is a major part of the discipline. And most things reproduce in the spring and the early summer. The plants are out there doing it. The little animals are out there doing it. My marine stuff is out there just coming into season about the time we get out of school now. So shifting the calendar so that is occurs essentially a month earlier in the calendar year than it did before, we lose something that way. You can have a good academic system under either the quarter system or the semester system. The quarter people would argue that you have a greater number of courses, they’re shorter, students can get into them intensively, they’re taking fewer courses at a given time. The semester people will argue we need the time for people to contemplate and to study and to learn about these things and the extra five weeks of the semester allow us to spread this material out. They can assimilate it over a longer period of time thereby learn better. Well, let me tell you, I don’t think it makes much difference, from that standpoint, either way. You can design a good system, but transitioning from one to the other is not easy.

JF: You said you were the faculty guru at the time of the transition. That was the Faculty Officer President? Or was that a different position that you held?

JY: It was a special position that I held. I had been active in both the Academic Senate and in variety of university-wide committees. And I’m not sure why I was appointed to it. The vice president simply said, “Yarnall, I want you to do this.” So I ended up doing it.
JF: You said you were a part of the Academic Senate. What was that like and what were your responsibilities in that position?

JY: Well, I was a member of the—each campus in the CSU has its own faculty senate or academic senate. And I was a member from about—hang on just a minute (talks to wife)—so anyway, I was a member of the academic senate from the middle ’70s until the time I retired. I was on the senate all that time. I kept getting re-elected and re-elected and so on. And I held a whole variety of positions in the senate. I was committee chair of several committees. I was the chairman of the academic senate for at least a couple of years. I was the president of the general faculty for a year or two. So I had a lot of stuff on the campus level. And in addition, we have a state-wide academic senate. I went to the state-wide senate about—I’ve forgotten exactly when—’82 or ’83 or ’84, somewhere around there. And I was on the state-wide academic senate until I retired then. And I was just a regular senator, and then I was a chair of a couple of committees, and then I was a member of the executive committee of the senate, which is the half-a-dozen people who manage the whole state-wide academic senate. And I did a lot of this kind. That is why I said I spent a lot of time as a campus politician. So that’s what I did.

JF: In the early ’80s the new biological sciences and engineering building was built. And then there were some problems with it. What were the problems and what were the effects on you and your classes and the department as a whole?

JY: Personally they had little or no effect on me because the bottom floor of the engineering and biological sciences building is owned by engineering. The upper floor belongs to biology and that’s mostly botany. The herbarium is there and most of the botany labs are there. The idea was grand in scale and scope, but it didn’t pan out. The reason that it’s got so much glass on it is that it was designed to be a solarly heated and operated and energy efficient building. And, to my knowledge, it never really worked very well. I am not sure whether it was a poor design or whether it was simply a matter of they didn’t have the money to do it right. But one of the consequences of it is that the second floor rests on steel trusses. And then there are steel pans laid down and then concrete poured on them. At the north end of the upper floor is where the biology shop is. It’s now the whole college shop. There is a lot of heavy equipment that sits on that floor. And one day the people who were underneath that shop came in and noticed that these trusses that were supposed to be straight and the cross sections vertical, were rotated and were leaning. Well if you know anything about engineering and design work, you know that a truss is strong in that vertical axis only if it remains vertical. Once you start to roll that thing, the strength in that thing goes way down. They had to close the building because it flat-out was not safe. If we’d had even a mild earthquake during the time when those trusses were rolling over, we could have had really serious sorts of problems. It’s the same problem that faces the state any time it builds a building. And it’s particularly true in the CSU. The idea and need for the building comes online in year one, or in year zero. There’s a huge bureaucratic process that goes through to get even onto the funding queue. That may take three or four or five years. Now it’s in the funding queue, but it may wait in that queue for another ten or twelve years. So, from the time you think you actually need this building to the time that you actually get somebody
working on it, can be a very long time. And that’s a problem we have right now. We have this Behavioral and Social Sciences building which is supposed to go up there on the top of Union Street. That’s been in the milieu since before I retired. And I’ve been retired for over ten years. And we may just now be getting to it. The Forbes Complex, you know P.E. over there, has been needing a remodel for decades. And we are now maybe going to get it because of the passage of Proposition 55 which is the proposition which provides bond money for construction and rehabilitation of educational facilities. Most of the money will go to K-12 education. But a portion of it is coming to higher-ed and the CSU and, in the long queue of projects that the CSU has, the Forbes complex has finally pushed its way close to the top. So, that’s a long answer, but it’s an attempt to put it in some context.

JF: A major issue throughout the ’70s and ’80s here in Humboldt area has been the Humboldt Bay Nuclear Power Plant. What were the issues? Did you ever get involved in any of the debates or protests? And what were your opinions on that?

JY: The power plant is an interesting issue because we have not yet solved the problem of nuclear waste. To me, that is the major drawback to nuclear power. That, and secondarily, the subsidies that have been provided nuclear power in the past in terms of supporting the extraction of fuel…..(tape ends)

Side A of Tape 2

JY: And my problem is more in general with nuclear power than it is with the Humboldt Bay Plant in particular. The nuclear power—we haven’t figured out where to put the nuclear waste. And we are still talking about that. And we are going to be dealing with that forever. Not just my lifetime but yours and as far out as you can picture your genes going, we’re going to have this problem. The second thing has been the subsidies that have been provided for nuclear power in terms of the mining and the refining of the ore to get the native ore’s nuclear material into useable fuel pellet size. The plant is a relatively small nuclear plant. It was built relatively early in the scheme of things. I think because they thought Eureka was not very big community, it was good place to put it. It was out of the way. If something happened to it, it would be of smaller consequence than if it was set in the San Francisco Bay Area. I think PG&E has been reasonably responsible in trying to fulfill the requirements that have been laid on it by the Nuclear Regulatory Commission. The plant’s now in what’s called a safe-store situation. And they are trying to get it from a case where the fuel is embedded in a water pool and into a dry storage. And ultimately, hopefully, shipment to Yucca Mountain out there in Nevada if they ever settle on that as a final storage place. The power plant major headache, as far as I could see, is that it is sited on top of an earthquake fault. And, as you know, this is a very seismically active area, perhaps as seismically active as any in the U.S. We have the only triple junction on land down near Petrolia, where the Gorda plate, the Pacific plate and the North American plate all come together at once. If you read the newspaper you see the seismo-watch every week, where they tell you how many earthquakes have occurred during the last week or so. Worrying about earthquake safety is something that is important around here. I, for a while, was a member of the Redwood
Alliance—that’s a long, long time ago—which has been involved in trying to get the power plant shut down and the materials moved away. I think now that it’s shut down, that’s probably a good thing. But the alternative, you have to remember, is that there is always a payoff. We still need electricity. So, all that was being generated by nuclear power—or if you don’t generate it that way then you’ve got to use fossil fuels. We haven’t yet come to the business about trying to generate electricity on a renewable basis. If you want to me to start on that I will, but let’s let you go to the next question.

JF: Another major issue in the area has been foresting over the years. What are positions on that? Did you ever take any action? What are the major issues involved?

JY: Well, I have never been a real frontline player, but I have been a fellow traveler at least for the people who want to restrict the Pacific Lumber Company’s current rate of cut. If you look at—remember I was a forestry major back in the ’50s and in those days the only good tree was a log. Forestry was essentially how do you grow them, how do you cut them down and move them out and make products. There wasn’t much worry, in any sort of official capacity, about other uses of the land. They were peripheral at best—you know, wildlife and aesthetics and all that sort of thing. In the early days of forestry around here, if you look around, there were some things that were done which absolutely could not be done today because of their environmental damage. Steep slopes were logged. Caterpillar tractors were walked up the middles of creeks because that was the easiest way to move them from one spot to another in a lot of cases. Logs were dragged across creeks. And so on and so on and so on. The thing about it is that—and in the old days the forest was viewed as the forest primeval and that it was an inexhaustible, or for all intents and purposes, an inexhaustible resource. And we know that’s not true now. We fortunately have slowly come to that understanding. We have much more rigid forestry regulations with regard to logging. However, in the pre-Maxxam Pacific Lumber Company days, the old Pacific Lumber Company was logging at a rate, shortly before its takeover, that was slower than the rate at which reproduction and regeneration was occurring on its lands. And that regeneration was being done with little in the way of tree planting or any sort of effort. It was mostly natural sorts of things. The redwood forest that you see sitting around us right now is all second growth forest from when this area where we are sitting was logged about 1900, maybe a little earlier, maybe a little later, but somewhere in about that time frame. So those are roughly hundred-year-old trees. And they’re nearly all stump sprouts from old redwood stumps. If they were available to PL they would be cut now—right now. Because they are at an age where they consider them marketable. And any time you look at an environmental issue, the issue is less whether something occurs or not, but the frequency with which it occurs and the magnitude of individual events. And so, what we’ve got here now is Charles Hurwitz has bought Pacific Lumber Company. He bought it because the value, the actual value of the company, exceeded the value of the stock—its stock on the market. So if he could buy the stock, he would have something worth more than what he paid for it. So that’s what he did. And he paid for it with junk bonds—high interest bonds. In order to pay off those high-interest bonds he had to produce more timber, more lumber. So he cut more. And that’s the problem that we’ve got now is the fact that—particularly in the Freshwater drainage, which we’re sitting in right now, and Elk River, which is a few miles to the
south of us—they’ve been cutting at a rate which is not sustainable and which has created
by virtue of the frequency and the magnitude of the impact, some rather nasty undesirable
consequences, namely siltation and frequency of flooding particularly in Elk River. In
the old days when it rained here—and I am talking old days that I recognize and I’ve only
been here a little over thirty years—when the rains would start, Freshwater Creek would
rise. It would rise relatively slowly. And flooding would occur relatively infrequently
compared to the number of winter storms that we would have. Now, because of the fact
that a lot of the timber has been removed, the creek, when it starts to rain, rises very
quickly. We get incidents of flooding of places like the Howard Heights Bridge, which is
just down the creek from us a little ways, relatively frequently. It also drops relatively
quickly too. But it oscillates in a much more rapid fashion than it used to. Another thing,
when I used to teach invertebrate zoology, while most of the animals I got were from the
marine area, I use to go Freshwater Creek and get animals called Freshwater Mussels.
They’re little tiny bi-valve mollusks, about three or four inches long, that sat in the gravel
over there and were an integral part of that ecosystem. They’re not there any more. And
they’re not there because of the siltation that’s occurred in those areas. They can’t handle
that. And they have persisted—you know those mussels were there for thousands of
years, even after the heavy logging when this area was first cut, the old growth. So my
attitude with regard to the logging, I’m not an anti-forester. I mean I live in a log house.
But, you have to do it gently. And you have to do it in a way that preserves the ability of
the land to support not only the trees but everything else around it.

JF: To switch to a lighter note, of all the guest speakers and performers that have come up
here to Humboldt campus, which has been your favorite and why?

JY: Oh boy. Well, let’s see. I can remember Linus Pauling coming up here. And he
came here because his granddaughter was a student here. And he gave a couple of great
seminars. And I remember—you know he was in the race for the structure of DNA along
with Watson and Crick and a number of other people. And if you remember DNA, it’s a
ladder-like structure which is sort of twisted, with sugars and phosphates making out the
rails of the ladder and the rungs being made up by these nitrogenous bases, you know,
adrenaline, thymine, cytosine and guanine. You remember this old biology crap?
Anyway—and that’s the model that Watson and Crick had and it’s pretty much held up.
While Pauling had the sugars and phosphates, three strands of them, twisted together like
a rope with the nitrogenous bases sticking out like branches off of a tree stem. So he had
it all wrong. But, we talked to him a little bit about that. And he says, you know, if
you’re going to have good ideas, you have to have a lot of ideas. And I always thought
that was a just great statement. The point is that some ideas are not going to be so hot but
you can’t quit trying. So he’s one who made a big impression. I enjoyed a concert that
Dizzy Gillespie put on when he came up here. He’s just such a great horn player, you
know, he’s out there blowing that trumpet and it’s just wonderful. Center Arts—it’s hard
to pick out a lot of others—they have done a great job in bringing to this area a host of
people and performers. We used to take our kids, when they were little, to the Peking
Acrobats. And I still got a big kick out of them. The way those people could do that
stuff. Watching these various ballet things. One of things that I enjoy as much as
anything is not just the performances that come from outside, but the ones that our own
theater and music departments put on. When they did “Man from La Mancha” I loved that. They did a great job. And the more recent Camelot was really, really cool. And just the other night we went to see a little one in the Gist Hall theater—“Prairie Voice”—which was just a great show. So, I enjoy all kinds of stuff like that. The Biology Department has a—and is put on and sponsored pretty much by the grad students—a speakers program. And, about eight or ten times a semester they have a speaker on Friday at noon or one o’clock, whenever. And we’ve had some excellent people come and talk about their research—all sorts of biological stuff—whether it is somebody who’s dealing with molecular sorts of things or somebody who’s been looking at fungi at one place or somebody who’s doing marine sorts of things. It’s really—there’s plenty out there. There’s a lot to tweak your curiosity and imagination. And I go.

JF: To wrap it up because this will be the last question, in over twenty years at Humboldt, what has been your favorite and least favorite memory?

JY: Oh boy. Well it’s hard to pick a good favorite because there are so many good memories that I have there. The memories of seeing students—the light go on in their eyes when they finally grasped something or made something work, that’s just a great sort of thing happen. And it’s particularly true when you see kids who come from families where they’re the first ones who’ve ever gone to school. And you see them succeeding academically. I think the least favorite sorts of things are when I see people with differing views really get into really acrimonious sorts of situations. That’s—and where you see people give up the collegiality. It doesn’t happen often, but it does once and a while. And so that’s not very pleasant. But right up with that is the fact that it’s usually some budgetary sort of thing that’s caused this rancor and animosity. When we were going through the budget cuts, I think, of the ’80s, I think it was—late ’80s and early ’90s—there were discussions about which are the most important or primary or core programs of the university and which are the peripheral ones with the idea that we’ve got to keep the core ones no matter what their quality academically is, and we’ve got to give up—if we have to—these peripheral programs no matter whether they are very high quality programs or not. And I can remember standing in Van Duzer theater—and I must have been president of the faculty or something like that then—and trying to lead a big forum about this. You’ve seen that Gary Larson cartoon with the deer standing there and the other deer’s looking at him saying “Wow, what a bummer of a birthmark.” And this guy’s got a big target on his painted on his—a birthmark on his chest. Well, I felt like that poor deer with the target on there because I felt like I had arrows sticking in me from every side. But that’s just the name of the game. The business of budget stuff. The lack of support of the state for the CSU has been and is now my most unpleasant sort of thing. We really need the support and we should have it and it is really short sighted for the state not to support this institution. What has made California the huge economic engine and the great place that it is has been its higher education system in part. And both the UC and the CSU have been the major driving forces of that engine. So that’s a long answer … But you know the other thing—there is one other thing I guess I can mention. Watching student athletes who are actually—who are good students perform is really a great sort of thing. And my tenure as the faculty athletic rep gave me the opportunity to
see lots of this and to be a part of that and that was really a great sort of thing. So, I guess that’s it.

JF: Thank you very much for your time. This is Joseph Freeman and Christina Medina concluding the interview with Professor Jack Yarnall on April 3rd 2004.

End of Interview